
1

SHARED SPOOL MODS

Installation Documentation

For Jes2 2.1

Installation Instructions

Contact information – HTTP://WWW.MVSPROGRAMMER.COM/SSMODS.HTML

EMAIL CONTACT – STEPHEN.MCCOLLEY@MVSPROGRAMMER.COM

http://www.mvsprogrammer.com/SSMODS.HTML

2

Table of Contents

SHARED SPOOL MODS .. 1
Installation Documentation ... 1
For Jes2 2.1 ... 1
Installation Instructions ... 1

Table of Contents .. 2
General Information and Overview .. 4

What are the SHARED SPOOL MODS, and what can they do for you? 4

Interaction with WLM Resources and Scheduling Environments 8
Compatibility and Support of the SHARED SPOOL MODS .. 8
History of the SHARED SPOOL MODS, at least as I know it. 9

JOB Level Method of Invoking the SHARED SPOOL MODS features 10
SYSTEM Level SHARED SPOOL MODS features .. 10

The JES2 $DJ command ... 11
$HASP943 messages .. 12
New JES2 Commands for the Shared Spool Mods .. 12

Additional Information ... 13
Installation Procedures – SMP method ... 14

Step 0 - Always take a backup before you start .. 14

Step 1 - Apply the Shared Spool Usermods.. 14

Step 2 - Update the JES2 parms .. 15
The format of the SSM statement ... 17
SSM Statement Options -.. 17

SMFNUM=0 ... 17
SMFOPT= ... 17

BEAFTER={ PREMOD | DELAY } .. 18
BATIME=### ... 18
UIDMASK=8 characters each is either an ‘*’ or a ‘U’ .. 18
JBNMAX=#### .. 19
JBNMASK=a mask of 8 characters each either an ‘*’ or a ‘U’ 19

ALLOWS={ ON | OFF } .. 20
CLASSOPT={ ON | OFF } .. 20
CLASSLIM(class specification)=### ... 20

STEP 3 - Make Updated Modules available to the JES2 address space, and process the

Shared Spool Mods parameter statements. ... 20
STEP 4 – IVPs – Post install Installation Verification Procedures 21
STEP 5 – Post install procedures - .. 21

Let me know where you are - for updates, new releases and a FREE – “I Installed the

Shared Spool Mods” coffee mug! ... 22
Installation Procedures – non-SMP method ... 23

Step 1 – Allocate libraries to receive installation files. .. 23

3

Step 2 – Add the SSM load library to linklist and APF authorize it. 24
Step 3 – Populate the libraries using IEBUPDTE. ... 24
Step 4 – Assemble and Bind the new load modules into SSM.LOADLIB. 24

How the exits work, and what each one does – .. 26

Module STJTABS, plus macro definitions ... 26
Module STSCX50A, JES2 end of input user exit... 26
Module STSCX04A and STSCX54A, exit04A and exit54a .. 26
Module STSCX54B, exit 54B .. 27
Module STSCX06A, exit 06 ... 27

Module STSC2050.. 27
Module STSCX20A, exit 20 ... 27
Module STSCX49A, exit 49 ... 28
Modules STSCX19A, STSCX24A, and STSSMTBS .. 28

SMF RECORD LAYOUTS .. 29
A few final notes for /*BEFORE and /*AFTER .. 33

If you need formal support for the Shared Spool Mods.. 35

4

General Information and Overview

What are the SHARED SPOOL MODS, and what can they do
for you?

 The SHARED SPOOL MODS are the latest version of what was previously known as

the MELLON SHARED SPOOL MODS. We all owe a great deal to Mellon Bank for

originating these mods, but in light of the fact that they have been maintained outside of

Mellon Bank for more than a dozen years, and that I have completely rewritten them

twice in that time, I will be referring to them as the SHARED SPOOL MODS from this

time forward.

 The SHARED SPOOL MODS have traditionally provided additional job selection

criterion that could be used by one job to indicated that it should be selected for execution

on a system containing a specific resource, or that it should be selected or not selected

based on the execution status or resource requirements of other related jobs. Please note

that it is NOT necessary to be running a Multi-Access Spool Configuration, or MAS to

take advantage of this package. Beginning with the JES2 1.8 compatible release of the

SHARED SPOOL MODS the control of jobs has been extended to include operational

controls that can be used to place limits on the total number of jobs that may run

concurrently in each job class on each system within a MAS, regardless of the

availability of JES2 or WLM initiators. We use this feature to provide operational

controls that allow us to use WLM managed initiators for job classes that must be

otherwise regulated, such as job classes that require a finite number of tapes. Other

system level controls can be used to limit concurrently executing jobs from a single user,

or group of users based on either job name or user id.

The SHARED SPOOL MODS enhance the job selection routines that JES2 uses when

selecting the next job for execution from the input queue by adding new requirements and

qualifications to submitted jobs. Throughout this document, whenever we refer to job

selection, we mean the process of selecting a job from the input queue for assignment to

an initiator and its immediate execution.

In addition to job selection enhancements, this version of the SHARED SPOOL MODS

provides extended control features for WLM managed initiators. The additional control

allows your operations staff to stop, start, or limit the maximum number of jobs selected

for individual job classes, or for all job classes. Since the time we added support to limit

the total number of jobs on a single member by job class, that same capability has been

natively added to JES2. I suggest that instead of limiting jobs by job class through the

Shared Spool Mods, you use the native JES2 function to accomplish the same thing.

5

 These same job limits are extended to traditional JES2 initiators as well as to WLM

managed initiators. You are also allowed to limit the number of jobs in concurrent

execution based on a user id mask or job name mask, so that you can prevent a single

user, or group of users from monopolizing the available initiators in the system.

The new requirements that can be used to qualify when a job is eligible to be selected to

run, or on which system it can run if you are in a MAS (Multi-Access Spool

configuration), are expanded by the SHARED SPOOL MODS beyond existing native

JES2 mechanisms. The new selection capabilities are listed below.

 The SHARED SPOOL MODS have traditionally provided additional job selection

criterion that could be used by one job to indicated that it should be selected for execution

on a system containing a specific resource, or that it should be selected or not selected

based on the execution status or resource requirements of other related jobs. Additionally

job selection can be altered in the following ways;

 All jobs can be delayed from the time they are first read until they are eligible for

execution by some number of seconds. This is to prevent a specific type of error

when using /*AFTER and /*BEFORE statements.

 Delay an individual job by some specified amount of time, up to 100 hours.

 Delay an individual job until some specific time of day occurs.

System specifications can be set to restrict jobs, even jobs using WLM managed initiators

in the following ways;

 A limit may be set for the number of jobs that can run in each job class within a

single MAS member.

 A limit may be set that limits the number of active jobs based on characters in the

job name.

 A limit may be set that limits the number of active jobs based on characters in the

user id associated with each job.

A special option is available to prevent the use of the ‘$SJ(jobnumber)’ command that

will force a job into execution if it is needed. If the $SJ command is allowed, it will also

override all of the above options that could prevent a job from moving into execution.

Here are some examples of how these enhancements to job selection can be used.

Assuming you have some number of jobs that can only run where a particular resource

exists – a CICS region, a vendor program, or maybe where extra tape drives are attached,

and assuming those resources may be available on different systems in the MAS

configuration each time your jobs are submitted, you can still ensure your job is only

initiated on the correct systems, by using the “/*ROUTE XEQ scheduling environment name”

JECL statement if those resources are described by a WLM scheduling environment, and

the WLM scheduling environment is activated only where the resource exists. The

6

resource described by a WLM scheduling environment does not have to represent real

resources. You could for example have a resource defined to WLM that is named

“BATCHWINDOW” that operations or automation enables, or disables whenever they

want, and jobs that are submitted with a “/*ROUTE XEQ BATCHWINDOW” statement

would only be eligible for job selection when, and only on the systems where, the

BATCHWINOW resource is enabled by operations or automation.

The “/*ROUTE XEQ HERE’ statement allows jobs to execute only on the LPAR that

they are submitted from, working like a dynamic SYSAFF= parameter. This option is

maintained for compatibility reasons only, since the same thing can now be accomplished

with standard JCL, although you must actually know the system name you are submitting

your job on.

The “/*CNTL resource_name,EXC | SHR” statement can be used to create an arbitrary

resource name and have any jobs you wish coordinate their availability for execution

based on the need for exclusive or shared access of that arbitrary resource name. No

previous system resource name setup is required to use this feature; only agreement of a

common name to be used by whoever writes the JCL for the various jobs is needed.

One use of this feature is to serialize or single thread a group of jobs, where only one may

run at a time. All of the jobs to be serialized would use a “/*CNTL” statement that uses

the EXC or exclusive option, and the same resource name. Any resource name will do, it

just has to be the same in all participating jobs. As soon as one of the jobs in the group

is selected for execution all other jobs with the same “/*CNTL” statement will become

ineligible for selection until the first job ends, and so on. Many times a DD statement

with a dummy dataset name and a disposition of old is used to accomplish nearly the

same thing, but that solution potentially ties up initiators that could be used to process

other ready work and actually creates a throughput bottleneck. The use of the “/*CNTL”

statements prevents the competing jobs from being initiated, and so does not tie up, or

waste initiators while each job waits for it’s turn to run. It also will not produce the

annoying messages that jobs are waiting for exclusive use of the dummy dataset name.

 A more complex example using this feature is particularly valuable to systems

programmers using SMP/e, where multiple jobs may run concurrently using the SHR

option with a common name as long as each job is not actually performing updates, but a

job that performs updates must run alone is coded to use the same resource name but with

an EXC or EXCLUSIVE option specified, which ensures it will always run alone. In

some shops they use their SMP/e CSI name as a resource name, and SMP/e LIST or

CHECK jobs are coded with a SHR option, while APPLY, or RESTORE jobs are coded

with an EXC for the same resource name. At the request of ‘power’ users of this feature,

a new option, PRG or PURGE, is now available that will prevent any other jobs

regardless of whether or not they have a SHR or EXC specification from running until

after the job with the PRG is selected and run. The PURGE option effectively says,

“This job must run alone, and no other job with this resource name may start until after

the job with the PRG specification has completed, and it must be the NEXT job to run

holding this resource name.

7

The “/*AFTER”, “/*BEFORE”, and “/*WITH” and “/*WITHOUT” control statements

can be used to dictate the order of job selection for a group of jobs in relation to each

other. There are some specific options, other than the most obvious ones, that can be

specified for each system that determine rules that must be met before any of the jobs

controlled by these statements is satisfied. The processing options that can be specified

for these types of statements are covered later in this document.

 A job class limit can be specified for each MAS member that limits the number of

concurrently executing jobs in any execution class. Different limits can be set for each

class, and each can be dynamically changed via operator command. The limits are

effective for both traditional JES2 managed job classes as well as WLM managed job

classes. This option might be used when putting a single LPAR into maintenance mode,

it is possible with just a couple of commands to stop all further job selection, except for

the jobclass or jobclasses that maintenance jobs will run in, and then to restore the

original environment that probably allowed any jobclass to execute. This option can be

used when WLM management is in effect for a jobclass, to allow jobs in a single jobclass

to run on only a single MAS member. This option can also be used to prevent WLM

from starting too many jobs of a particular class, before it has a chance to determine the

overall effect of the jobs on the system. Since the same thing can now be accomplished

via the $T JOBCLASS command with the XEQMEMBER(membername)=MAX= parm,

we suggest that you allow JES2 to directly control the maximum number of jobs that can

run concurrently on each member of a MAS configuration rather than use this older

feature of the Shared Spool Mods. Of course either will work.

 A mask value can be set that is used to select characters from the userid or jobname that

are associated with each job, and the number of concurrently executing jobs may be

limited for all jobs with a matching resultant value.

 Masks are composed of up to 8 characters, with each character being either an asterisk,

or a character “U”. The characters of the user id are compared against the mask. For

each of the positions in the mask with a ‘U’ the corresponding characters from the userid

are extracted. All of the extracted characters from the user id are then concatenated, to

form an intermediate result. All jobs with the same intermediate result are considered to

belong to the same group, and it is to that group that the limit, if any, is imposed.

As an example of limiting active jobs based on userids and a mask value, assume your

installation has a standard for creating userids that says the userids are formatted with the

following scheme;

 Positions 1-2 represent location, LL

 Positions 3-4 Are an individuals initials, II

 Positions 5-6 Are the department, DD

 Positions 7-8 Are job function, FF

8

A userid could then be said to be in the form of C’LLIIDDFF’.

Next if you wished to limit the number of jobs that were owned by users in each

department, a mask of ****UU** could be set. With that mask, only positions 5 and 6 of

the userid would be taken into account when determining if the maximum number of jobs

that are allowed for that group. Likewise, a mask of **UU**** could be set and then the

limit would be imposed for jobs that were owned by userids with the same first and last

initials, or a mask of UU**UU** could be set to limit the number of active jobs for each

location and department combination. Obviously then a mask of UUUUUUUU would

limit the number of jobs for each userid.

 The masking feature is used exactly the same way with the JOBNAME as it is with the

USERID.

Interaction with WLM Resources and Scheduling Environments

 One of the primary job selection criterions available through the SHARED SPOOL

MODS is the availability of a particular resource name being available on a particular

system. In the past, we maintained these names in a table within the SHARED SPOOL

MODS code; and provided JES2 commands that would alter the state of the resources,

either on or off. We now use WLM Scheduling Environment names instead. The

scheduling environment names are the same ones displayed on the SDSF SE panel. The

scheduling environments are on when all of the resource names that make up each

environment are also on. WLM resource names are the same names displayed on the

SDSF RES panel. The WLM scheduling environment names are what are matched on

the “/*ROUTE XEQ scheduling environment name” JECL statements. This function is

virtually identical to the new SCHENV parameter on the jobcard. In fact, we substitute

the internal value of the SCHENV with what we find in the /*ROUTE XEQ card only if

there is no current value set for SCHENV. These mods supported the function long

before JES2 adopted the facility, which appears to have been modeled after the SHARED

SPOOL MODS, and arose out of a long standing SHARE requirement.

 While these mods continue to support the older style /*ROUTE XEQ statements to

route jobs for execution based on resource locations, we strongly suggest that the older

/*ROUTE XEQ statements for job selection be replaced by the new IBM supported

SCHENV= parameter on the job card.

Compatibility and Support of the SHARED SPOOL MODS

 The SHARED SPOOL MODS, as they exist today, do not modify any JES2 source

directly, other than the $USERCBS macro that is intended to be modified by the user,

9

and only makes use of fully supported and documented exits and facilities; we see no

reason why they may become unsupportable in the future.

History of the SHARED SPOOL MODS, at least as I know it.

These mods were originally designed and maintained by MELLON Bank, and we owe a

great deal of gratitude to MELLON for its original design and forethought. I have

maintained the SHARED SPOOL MODS personally for over ten years, and they were

maintained by others at this company for several years before that time. Around the turn

of the millennium, I completely rewrote the mods. The intent of the rewrite was to

incorporate the new JES2 functions that make use of WLM resource names and

scheduling environments, and to repackage the mods such that they were all contained in

standard JES2 table pairs and exits, so that we would make no direct changes to the JES2

source code. That objective was met. The conversion effort for 1.7 was such that we

virtually rewrote everything one more time. While in their current state, they are not

simple exits, they are all standard documented exits, all using standard, documented

interfaces to JES2 and WLM, and are quite manageable. I will refer to these mods

simply as the ‘SHARED SPOOL MODS’ from now on. Support is provided for the

Shared Spool Mods on a time available basis, meaning if I have time I will address

problems. I am sorry but that is the best that I can do right now. If you really need a

dedicated support contract for the shared spool mods, please check out –

http://www.mvsprogrammer.com/ssmods.html

http://www.mvsprogrammer.com/ssmods.html

10

JOB Level Method of Invoking the SHARED SPOOL MODS
features

The SHARED SPOOL MODS features may be invoked by individual jobs via 8 JECL

statements, which are:

“/*CNTL XEQ resource, { EXC | SHR | PRG}”

“/*ROUTE XEQ scheduling environment name | HERE ”

“/*WITH jobname”

“/*WITHOUT jobname”

“/*AFTER jobname”

“/*BEFORE jobname”

“/*HOLDFOR hh:mm:ss”

“/*HOLDTIL hh:mm:ss”

For a detailed explanation of what each JECL statement does, and its format, please refer

to the “SHARED SPOOL MODS for JES2 Users Guide and Documentation”.

In terms of operational support for the SHARED SPOOL MODS, the mods expand the

results of the $DJ command to include SHARED SPOOL MODS information for each

job that has one or more of the SSM’s JECL statements. We also created a new

informational message $HASP890 with detailed information about each of the JECL

statements that are recognized in a job’s JCL which are displayed as each of the cards is

recognized in reader processing. These are both documented below.

SYSTEM Level SHARED SPOOL MODS features

The features that are not associated with specific job selection, i.e. the features not listed

in the item directly above this one, are all SYSTEM level options, and can be set either

through JES2 PARMS or through the use of new JES2 commands. Examples of the

features that can be specified at a system level include;

 Specifying whether or not to write SMF records.

 Specifying the level of SMF recording.

 Specifying the SMF number if SMF recording is active.

 Specifying a maximum number of jobs that can run in each job class.

 Specifying a maximum number of jobs that can be run based on a masked user id.

 Specifying a maximum number of jobs that can be run based on a masked job

name.

It is important to note three things about the system level options, first they are effective

for the individual JES2 system, and they are NOT MAS wide in effect. Second, they can

11

be altered through simple JES2 commands as well as fixed JES2 parameters. And

finally, all of the system level options are optional, none of them are required.

The JES2 $DJ command

 The JES2 $DJ command output has been extended to include information about any

Shared Spool Mods controls in effect for a single job. Up to five CNTL names are

displayed qualified with an “E” for exclusive, or an “S” for shared. One /*WITH

jobname, one /*WITHOUT, one /*BEFORE and one /*AFTER jobname, will each be

displayed if those types of statements are present in the job. Examples of the extended

displays are given below. Please note that the information is included in both the

standard or long versions of the command.

Altered Display Commands –

-$DJ(25926)

$HASP890 JOB(T0SM139)
$HASP890 JOB(T0SM139) STATUS=(AWAITING EXECUTION),CLASS=X,
$HASP890 PRIORITY=6,SYSAFF=(ANY),HOLD=(NONE),

$HASP890 DELAY RSN=HOLDTIL TIMR,AFTER=T0SM150,
$HASP890 BEFORE=T0SM160,WITH=T0SM140,WITHOUT=T0SM138,
$HASP890 HOLDFOR=00:02:00¦ELAPSED,HOLDTIL=10:20:00,
$HASP890 CNTL=(RESNAME1-E,MYSTUFF-S,YOURSTUF-P,
$HASP890 COMMON-S,RESNAME1-E)

The BOLD text in the display above (everything, starting from the third line down) is all

as a result of SHARED SPOOL MODS statements in the JCL. First the ‘DELAY RSN=’

is only displayed for jobs with SHARED SPOOL MODS statements in the JCL, and

indicates whether the job has been bypassed for job selection due to a SHARED SPOOL

MODS restriction or if it has simply never been selected by JES2 as a candidate for

execution. In a future release I intend to make the ‘DELAY RSN’ field available for

every job in the system. In the case above the job is held due to the HOLDTIL timer

value of 10:20:00. The AFTER=, BEFORE=, WITH=, and WITHOUT= all indicate the

jobname associated with each like named control statement. The HOLDFOR= and

HOLDTIL= fields indicate the time values specified, and whether or not they have

elapsed. In this case the HOLDFOR time has expired, the HOLDTIL time has not. The

CNTL= field lists the values specified in up to 5 /*CNTL statements followed by either a

-S for shared, -E for exclusive, or -P for purge.

The LONG version of the Display Job command is shown below, it also contains the

same SHARED SPOOL MODS information that the short form of the display does.

-$DJ(25926),LONG

12

$HASP890 JOB(T0SM139)
$HASP890 JOB(T0SM139) STATUS=(AWAITING EXECUTION),CLASS=X,
$HASP890 PRIORITY=6,SYSAFF=(ANY),HOLD=(NONE),
$HASP890 CMDAUTH=(LOCAL),OFFS=(),SECLABEL=,
$HASP890 USERID=T0SM0,SPOOL=(VOLUMES=(JES2T3),TGS=1,
$HASP890 PERCENT=0.0009),ARM_ELEMENT=NO,CARDS=16,
$HASP890 REBUILD=NO,SRVCLASS=BATTSTMD,SCHENV=TAPE,
$HASP890 SCHENV_AFF=(TSPC,TSPD),CC=(),DELAY=(),
$HASP890 CRTIME=(2007.116,13:42:07),
$HASP890 DELAY RSN=HOLDTIL TIMR,AFTER=T0SM150,
$HASP890 BEFORE=T0SM160,WITH=T0SM140,WITHOUT=T0SM138,
$HASP890 HOLDFOR=00:02:00¦ELAPSED,HOLDTIL=10:20:00,
$HASP890 CNTL=(RESNAME1-E,MYSTUFF-S,YOURSTUF-P,
$HASP890 COMMON-S,RESNAME1-E)

$HASP943 messages

In addition informational messages, $HASP493 and $HASP494 are written to the log as

jobs with /*CNTL, /*WITH, /*BEFORE, or /*AFTER are read. Examples of the

messages follow.

These messages were issued for the job displayed above, as it was submitted. These form

one of the audit trails available for used SHARED SPOOL MODS options. The other

audit trail option is of course the optional SMF recording.

$HASP943 T0SM139 * -- HOLD UNTIL = 10:20:00 --
$HASP943 T0SM139 * -- HOLD FOR = 00:02:00 --
$HASP943 T0SM139 * -- WITH JOBNAME = T0SM140 --
$HASP943 T0SM139 * -- WITHOUT JOBNAME = T0SM138 --
$HASP943 T0SM139 * -- CONTROL INFO = RESNAME1,EXC --
$HASP943 T0SM139 * -- CONTROL INFO = MYSTUFF ,SHR --
$HASP943 T0SM139 * -- CONTROL INFO = YOURSTUF,PRG --
$HASP943 T0SM139 * -- CONTROL INFO = COMMON ,SHR --
$HASP943 T0SM139 * -- CONTROL INFO = RESNAME1,EXC --
$HASP943 T0SM139 * -- AFTER JOBNAME = T0SM150 --
$HASP943 T0SM139 * -- BEFORE JOBNAME = T0SM160 --

New JES2 Commands for the Shared Spool Mods

 In support of the new features we now have fir the first time, JES2 parm statements that

can be included in your JES2 startup parameters. The values set, or defaulted to, in the

JES2 parameters can be displayed using JES2 commands, and can be modified by using

JES2 commands.

The general form of the new display commands are;

 $D SSM,option,option,option,…

The $D SSM command, with no options will display all SHARED SPOOL MODS

system level options at one time - about 15 lines of console output. Below is a sample of

the output from the $D SSM command.

13

$HASP468 SSM
$HASP468 SSM SMFNUM=216,SMFOPT=NONE,BEAFTER=PREMOD,BATIME=0,
$HASP468 UIDMAX=123,UIDMASK=UUUUUUUU,JBNMAX=0,
$HASP468 JBNMASK=********,ALLOWS=ON,CLASSOPT=OFF,
$HASP468 CLASSLIM(A)=256,CLASSLIM(B)=255,CLASSLIM(C)=256,
$HASP468 CLASSLIM(D)=255,CLASSLIM(E)=256,CLASSLIM(F)=255,
$HASP468 CLASSLIM(G)=255,CLASSLIM(H)=255,CLASSLIM(I)=255,
$HASP468 CLASSLIM(J)=255,CLASSLIM(K)=255,CLASSLIM(L)=255,
$HASP468 CLASSLIM(M)=255,CLASSLIM(N)=255,CLASSLIM(O)=255,
$HASP468 CLASSLIM(P)=255,CLASSLIM(Q)=255,CLASSLIM(R)=255,
$HASP468 CLASSLIM(S)=255,CLASSLIM(T)=255,CLASSLIM(U)=255,
$HASP468 CLASSLIM(V)=255,CLASSLIM(W)=255,CLASSLIM(X)=255,
$HASP468 CLASSLIM(Y)=255,CLASSLIM(Z)=255,CLASSLIM(0)=255,
$HASP468 CLASSLIM(1)=255,CLASSLIM(2)=255,CLASSLIM(3)=255,
$HASP468 CLASSLIM(4)=255,CLASSLIM(5)=255,CLASSLIM(6)=255,
$HASP468 CLASSLIM(7)=255,CLASSLIM(8)=255,CLASSLIM(9)=255

The general form of the new modify commands are;

 $T SSM,option,option,option…

The specific options that can be displayed or changed are -

SMFNUM - the SMF number to use when writing SSM SMF records.**

SMFOPT - The SMF recording level option**

BEAFTER - the specialized options to take when using /*BEFORE and /*AFTER.

BATIME - # of seconds to delay all jobs before job selection, it BEAFTER=DELAY

UIDMAX - the maximum number of concurrently active jobs with matching UIDMASK

values.

UIDMASK - the MASK to apply to the submitters, userid before checking the UIDMAX

value.

JBNMAX - the maximum number of concurrently active jobs with matching JBNMASK

values.

ALLOWS - determines if $SJ commands are allowed or not.

CLASSOPT - determines if CLASSLIM values are effective.

CLASSLIM(jobclass) - sets the limit of concurrently active jobs for each jobclass.

** NOTE -- ** indicates the feature is not yet functional

These commands are explained in much greater detail in the SHARED SPOOL MODS

OPERATIONS COMMANDS document.

Additional Information

Detailed information about all of the features is available in the ‘SHARED SPOOL

MODS User Documentation’.

14

Installation Procedures – SMP method
If you intend to use a NON-SMP install please skip forward to page 22 for those

procedures.

Step 0 - Always take a backup before you start

This is an SMP/e install, so backup accordingly. You will be replacing JES2 macro

$USERCBS - it was designed to be updated by the user, all other elements are NEW, we

are not going to update, modify, or replace any existing JES2 macros, source, or modules,

but you ALWAYS want to be able to get back to where you started if you need to!

Step 1 - Apply the Shared Spool Usermods

The SHARED SPOOL MODS have been repackaged so that they are a single usermod

which I have named LSES500. It contains several SRC, JCLIN, and MAC member

additions to JES2. The additional members are added directly to the IBM provided JES2

source libraries SHASMAC and SHASSRC, and are packaged, to assemble into the IBM

provided link library, SHASLNKE. They do NOT replace any existing macros, or source

elements with the exception of the $USERCBS macro which is designed to be updated,

these are all new elements and they are detailed at the end of this section. To install the

package you simply run a RECEIVE / APPLY CHECK / APPLY sequence of SMPe

jobs. Then make the updated SHASLNKE library available to the system as you would

normally do after any other JES2 maintenance, update your JES2 initialization parms,

and warm start JES2.

The mods will add new source members to DDDEF SHASMAC and SHASSRC and will

place new linkedited modules into DDDEF SHASLNKE. The JCLIN also references

standard SYSLIB DD datasets;

 SYS1.MACLIB

 SYS1.MODGEN

 SYS1.SHASMAC

 SYS1.SHASSRC

 SYS1.AHASMAC

 SYS1.AHASSRC

 SYS1.AMACLIB

 SYS1.AMODGEN

 The names should be fine unless the distribution of JES2 changes significantly. If it

does, it may be necessary to modify the JCLIN before receiving the usermods.

 Since we are including a change for the JES2 provided $USERCBS macro, it is possible

that it has previously been updated, either via SMP/e or by direct edit. If your

15

$USERCBS macro in the SHASMAC library has been updated by SMP/e you may need

to add “PRE” statements to LSES500 that represent those changes. If you have modified

the macro directly, you will either have to incorporate your changes with the ones we

provide, or you will have to re-do the manual editing that was done to the $USERCBS

macro after this installation is complete.

 Just to restate this one more time, the macros, source, and modules are all new - except

for macros $USERCBS which is intended by IBM to be updated. The source, macros,

and load modules will all be placed into standard JES2 libraries. With the exception of

$USERCBS, NO IBM SOURCE, MACROS, OR LOAD MODULES are either modified

or replaced. These are all new elements, that will be implemented via standard exits and

interfaces. This is important because changes to JES2 (fixes, APARS, PTFs, even source

code changes) will not cause any need to re-assemble or relink the SHARED SPOOL

MODS.

 NOTE * * * The SMP APPLY will result in a large number of large assemblies. I had

to change the SMP/e Utility entry for ASMA90 (or whatever your ASM utility entry

points to) to have a parm value that includes “SIZE(MAX)”, and then also use a

REGION of 18M on the JOBCARD and EXEC statement in the APPLY step. Otherwise

I got some really odd error messages. You should get a return code of zero for all the

assemblies and links.

 You may have been better than I, and already had size(max) setup of course.

Step 2 - Update the JES2 parms

After SMP installation, update your JES2 parms by adding the following three groups of

JES2 parms statements: LOADMOD statements, EXIT statements, and SSM statements.

The LOADMOD statements:

LOADMOD(STJTABS) /* DYNAMIC TABLE DEFINITIONS FOR JQE EXT. #JES7*/
 /* */
LOADMOD(STSSMTBS) /* DYNAMIC TABLE DEFINITIONS FOR SSMT #JES7*/
 /* */
LOADMOD(STSCX04A) /* CALLS EXIT 54 ROUTINES */
LOADMOD(STSCX54A) STORAGE=CSA /*ROUTE XEQ RESNAME AND VALIDATES */
 /* */
LOADMOD(STSCX54B) STORAGE=CSA /* OTHER SPECIAL JECL STATEMENTS */
LOADMOD(STSCX05B) /* PREVENTS PURGING JOBS BY RANGE */
 /* */
LOADMOD(STSCX06A) /* TURNS /*ROUTE CNTL,XX INTO SCHENV= VALUES */
 /* */
LOADMOD(STSCX19A) /* INITIALIZATION STMTS (FOR SSM) */
 /* */
LOADMOD(STSCX20A) /* JCT TO JQE COPY ROUTINE */
 /* */
LOADMOD(STSCX24A) /* POST-INITIALIZATION (FOR SSM) */

16

 /*
/LOADMOD(STSCX49A) / ACCEPTS OR REJECTS JES2 NEXT CHOICE OF JOBS */
 /* (THE QGOT ROUTINE) */
LOADMOD(STSCX50A) STORAGE=CSA /* MOVE JCTX TO THE JQE EXTENSION */
 /* */

NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT
statements for EXIT(19) and EXIT(24) should be physically placed BEFORE the
SSM parmlib statements.

The EXIT statements:

EXIT(004) ROUTINE=(EXIT04A),STATUS=ENABLED
 /* A = CALLS EXIT54 ROUTINES */
EXIT(054) ROUTINE=(EXIT54A,EXIT54B),STATUS=ENABLED
 /* A = GETS ROUTE XEQ INFO */
 /* B = GETS "BEFORE/AFTER/INFORM/HOLDFOR/TIL ETC. " */
EXIT(006) ROUTINE=(EXIT06A),STATUS=ENABLED
 /* A = SETS SCHENV BASED ON ROUTE XEQ CARDS */
EXIT(019) ROUTINE=(EXIT19A),STATUS=ENABLED
EXIT(024) ROUTINE=(EXIT24A),STATUS=ENABLED
 /* 19A = BUILDS TEMP SSMT NAME/TOKEN PAIR + CB */
 /* 24A = BUILDS PERM SSMT N/T PAIR */
EXIT(020) ROUTINE=(EXIT20A),STATUS=ENABLED
EXIT(050) ROUTINE=(EXIT50A),STATUS=ENABLED
 /* COPIES JCT INFO INTO THE JQE EXTENSION */
EXIT(049) ROUTINE=EXIT49A,STATUS=ENABLED
 /* IMPLEMENT BEFORE AFTER WITH CNTL STATEMENTS */
EXIT(054) ROUTINE=(EXIT54A,EXIT54B),STATUS=ENABLED
EXIT(100) ROUTINE=EXIT100A,STATUS=ENABLED
 /* JES2X100=STSC FCB SETUP ROUTINES */

NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT
statements for EXIT(19) and EXIT(24) MUST physically be placed BEFORE the SSM
parmlib statements.
NOTE ** If you already are using one or more of these exits, simply add your
existing routine names AFTER the routine names listed above. For example,
EXIT(54) already calls two exits EXIT54A and EXIT54B, if you have a third
routine that should be called by exit 54, simply add it after the existing
routines. For example – EXIT(054) ROUTINE=EXIT(EXIT54A,EXIT54B,MYEXIT)

The SSM statements: (this is an example only - set the parameters the way you want

them).

SSM SMFOPT=NONE, /* SMF recording level (not yet implemented)*/
 SMFNUM=216, /* SMF number used (not yet implemented)*/
 BEAFTER=PREMOD, /* BEFORE/AFTER processing options */
 BATIME=3, /* Delay time, if BEAFTER=DELAY is selected*/
 UIDMAX=256, /* 256 jobs per 5 position uid */
 JBNMAX=0, /* 0 = no max based on JBNMASK value */
 UIDMASK=UUUUU***, /* Mask used with UIDMAX to limit jobs by UID*/

17

 JBNMASK=********, /* Mask used with JBNMAX to limit jobs by JBN*/
 ALLOWS=OFF, /* ALLOW or DISALLOW $SJ commands to be used*/
 CLASSOPT=ON, /*enforce or don’t enforce limits by jobclass*/
 CLASSLIM(A-Z,0-9)=234 /*limit for each class - if classopt=on*/

NOTE ** the LOADMOD statements for STJTABS and STSSMTBS, and the EXIT
statements for EXIT(19) and EXIT(24) MUST physically be placed BEFORE this SSM
parmlib statement.

The format of the SSM statement

SSM SMFNUM=###,SMFOPT={ACTION | INPUT | ALL | NONE},

BEAFTER={PREMOD | DELAY }, BATIME=tt,UIDMAX=###,

UIDMASK=mmmmmmmm, JBNMASK=mmmmmmmm, ALLOWS={ ON | OFF },

CLASSOPT={ ON | OFF }, CLASSLIM(class specification)=###

** note ** The SMF functions are not yet implemented.

SSM Statement Options -

 SMFNUM=0

SMFNUM specifies the number of the smf record that the SHARED SPOOL MODS

with write it’s SMF data to, if SMFOPT is not set to NONE. Use a number between 200

and 255 that is not being used by any other products in your installation. At SunTrust we

have smf number 216 reserved for this purpose. The default of zero specifies that no smf

records will be written.

 ** NOTE** SMF processing is still only partially implemented – we write some of the

record subtypes defined in the STPCSMFD mapping macro, some we do not – the

“future use” comments may be wrong in the mapping macro.

SMFOPT=

SMFOPT= specifies the level of SMF recording, specify either ALL for all SMF record

types, INPUT for a record of all SHARED SPOOL MODS input statements, ACTION

for actions taken by the SHARED SPOOL MODS, and NONE if you do not want any

SMF records written.

** NOTE** SMF processing is still only partially implemented – we write some of the

record subtypes defined in the STPCSMFD mapping macro, some we do not – the

“future use” comments may be wrong in the mapping macro.

18

BEAFTER={ PREMOD | DELAY }

BEAFTER specifies how the BEFORE and AFTER statements are to be processed,

PREMOD specifies that they should be handled as they have historically been handled.

DELAY specifies that all jobs should wait on the input queue for a length of time

specified in the BATIME operand. Delay can be used to correct some unintended job

sequencing that can occur when multiple jobs are submitted simultaneously and they

appear to get to the input queue “out of order”. - PLEASE see the end of the document

for “A few final notes for /*BEFORE and /*AFTER” for a more in depth discussion of

the issues around the BEAFTER and BATIME options.

BATIME=###

BATIME is used to determine how many seconds a job must wait on the input queue

before becoming eligible for execution if the BEAFTER= option is set to DELAY.

UIDMASK=8 characters each is either an ‘*’ or a ‘U’

This specifies the Userid Mask. It is used in conjunction with the UIDMAX value. The

USERID owning each active job (or about to be selected for execution job) is examined

one character at a time and compares it to the UIDMASK, if the corresponding position

in the UIDMASK is a ‘U” the character from the UserID is extracted, if the character is

an ‘*’ the position is ignored. Once the end of the UserID field is reached, all the

selected characters are concatenated to form an intermediate UIDMASK value. The

UIDMAX value is used as a maximum count for all jobs that have a matching

UIDMASK VALUE.

Ex. UIDMASK=UU*UU***

 UIDMAX=2

 Given the following USERIDS associated with the following jobs that are active:

 JOBNAME1 has a USERID of ABCD1234 - masked value = ABD1

 JOBNAME2 has a USERID of ABBD1999 - masked value = ABD1

 JOBNAME3 has a USERID of CBAD2000 - masked value = CBD2

 JOBNAME4 has a USERID of CBXD2050 - masked value = CBD2

 JOBNAME5 has a USERID of CBXD3050 - masked value = CBD3

A new job with a userid value of ABDD1000 - masked value = ABD1, would not be

allowed to start since it would become the 3
rd

 (1 more than the limit) job with the same

masked value.

A new job with a userid value of CBBD3978 - masked value = CBD3, would be allowed

to start since it would only bring the total for that masked value to 2 active jobs

(JOBNAME5 + the new job with a userid of CBBD3978).

19

A new job with a userid value of CBXD4050 - masked value = CBD4, would be allowed

to start since it would only bring the total for that masked value to 1 active job with that

masked value.

Note - changing the UIDMASK and UIDMAX value to lower values will not affect jobs

that have already been selected for execution. They can only affect the decision to allow

or reject future jobs as they move from the input to execution queues.

JBNMAX=####

This is the maximum number of jobs to allow to concurrently execute with the same

jobname masked value on this JES2 member. The default value is zero and indicates that

this test should not be done when JES2 selects a potential job for execution.

JBNMASK=a mask of 8 characters each either an ‘*’ or a ‘U’

This specifies the Jobname Mask. It is used in conjunction with the JBNMAX value.

The JOBNAME of each active job (or about to be selected for execution job) is examined

one character at a time and compared to the JBNMASK. If the corresponding position in

the JBNMASK is a ‘U” the character from the JOBNAME is extracted; if the character is

an ‘*’ the position is ignored. Once the end of the JOBNAME field is reached, all the

selected characters are concatenated to form an intermediate JBNMASK value. The

JBNMAX value is used as a maximum count for all jobs that have a matching

JBNMASK VALUE.

Example - JBNMASK=UU***U**

Given the following active jobnames, and a JBNMASK=U***U** value, and a

JBNMAX=2 setting;

 JOBNAME1 masked value = JOE

JOB0029 masked value = JO2

JOBX masked value = JO

TSNAME1 masked value = TSE

TSBNAME masked value = TSM

TSXXXM2 masked value = TSM

JOB002X77 masked value = JO2

A newly selected job with a jobname of JOB992 would have a JBNMASK value of JO2,

and would not be allowed to execute yet because it would exceed the limit of 2-

(JOB002X77 and JOB0029) are already executing.

A newly selected job with a jobname of JOB993 would have a JBNMASK value of JO3

and with no matching jobname masks would be allowed to execute (the count for

JBNMASK JO# would then become 1).

A newly selected job with jobname TSODEEP would have a JBNMASK value of TSE,

and since there is only one other job with a matching mask value (TSNAME1), it would

be allowed to execute. Then the limit would be met for that JBNMASK value.

20

ALLOWS={ ON | OFF }

ALLOWS determines whether or not the $SJ command is allowed when using WLM

managed initiators. The default OFF prevents the use of $SJ commands from being used.

Using a $SJ command will override ALL SHARED SPOOL MODS controls and allow

the job to run immediately.

CLASSOPT={ ON | OFF }

CLASSOPT determines whether or not the classlim values that limit the number of active

jobs on this system, in each class are enforced or not. ON means that the classlim value

for each class is being enforced. OFF means that the classlim value for each class is

NOT being enforced. Note - setting a low limit will not stop, or cancel any jobs, it will

just prevent any new jobs from starting until the total number of jobs for each class is

within the limit specified in the CLASSLIM statement for each class.

CLASSLIM(class specification)=###

CLASSLIM specifies the maximum number of jobs for each class that will be allowed to

start. Valid CLASSLIM class specifications are;

 A single character.

 A range of characters ie. A-L or A-Z or 0-9

 A masked value ie. * (meaning all classes)

 A combination of the above separated by commas, ie. CLASSLIM(A-G,J,K,0-9)

STEP 3 - Make Updated Modules available to the JES2 address
space, and process the Shared Spool Mods parameter
statements.

Make the updated JES2 load modules available. That may require a refresh of LLA or

copying a maintenance pack to production. All modules created by the JES2 usermods

are link-edited into DDDEF SHASLNKE, so you may copy the individual modules, or

recopy the entire JES2 library, depending on your local procedures for implementing

JES2 changes. The final step is to shut down and restart JES2 a warm start is required – a

HOT START will not bring the new load modules into storage, nor will it process the

Shared Spool Mods parameter statements. The WARM STARTS can be accomplished

via ‘rolling warm starts”. NOTE - it is not possible to update all of these exits simply by

21

using $REPEXIT or $ADDEXIT commands. Some must be active while the JES2 parms

are still being read, others create dynamic table extensions and only take effect at JES2

initialization. Generally speaking, you may use $REPEXIT with exits other than exit 19

and 24, or the STJTABS and STSSMTBS modules. It is not necessary to shutdown all

JES2 tasks in the MAS at the same time.

A warm start of JES2 is required to bring in the new load mods, and process the Shared

Spool Mods parameter statements. It is acceptable to perform a ‘rolling’ warm start. Of

course jobs that are otherwise eligible to run on member of your MAS that have not yet

had the Shared Spool Mods installed, will not observe the additional restrictions placed

on the jobs by the new JECL statements until they have also been started with the Shared

Spool Mods.

STEP 4 – IVPs – Post install Installation Verification Procedures

I have included with this release, some new IVP jobs that you can run to verify that the

modifications have been installed properly. The IVPs will also serve as an example of

the different types of things that can be accomplished with these mods.

To facilitate testing I have included a new module that will be assembled and linked into

your SHASLNK library its name is MSSWAIT. The purpose of the program is simply to

wait, but that helps facilitate our IVP jobs. The program uses no DD statements, and

accepts a single parm in the format of ‘hhmmssth’,

hh is the number of hours to wait

mm is the number of minutes to wait

ss is the number of seconds to wait

th are tenths and hundredths of a second to wait

The IVP jobs are located in the PDS that you originally received from the XMIT dataset.

The test members are:

SAMP0010 – This set of jobs shows how the HOLDFOR statement is used.

SAMP0012 – This job shows how HOLDTIL statements are used.

SAMP0020 and 0021 – These members are used together and illustrate

BEFORE/AFTER controls. The JOB in SAMP0020 ‘sets the stage’ for the 5 jobs

that are in member SAMP0021. Submit the job in SAMP0020, and then in less

than 90 seconds submit the jobs in member SAMP0021.

STEP 5 – Post install procedures -

22

Let me know where you are - for updates, new releases and a
FREE – “I Installed the Shared Spool Mods” coffee mug!

Drop me a line at STEPHEN.McCOLLEY@MVSPROGRAMMER.com and I will be

happy to add you to my list of people to notify in case we find a bug, have a bug fix, or

when we release the next version and so on. I also have a limited number of ‘SHARED

SPOOL MODS’ coffee mugs, they are free, just let me know where to send you one.

 If you do by chance find a problem, please let us, know. While I can NOT offer to fix

anything, and we never guarantee anything for the Shared Spool Mods, I will do what I

can. We run these mods as well and do not want bugs floating around to bite anyone,

especially us. Same contact address. –

STEPHEN.MCCOLLEY@MVSPROGRAMMER.COM

mailto:STEPHEN.McCOLLEY@MVSPROGRAMMER.com
mailto:STEPHEN.MCCOLLEY@MVSPROGRAMMER.COM

23

Installation Procedures – non-SMP method

Step 1 – Allocate libraries to receive installation files.

You will need 4 new datasets, they are listed below along with appropriate allocation

sizes.

Your.prefix.SSM.ASM – PDSe – 21 trks of a 3390, lrecl=80, blksize=32720 #blks=18,

secondary# = 2,recfm=fb

Your.prefix.SSM.MACROS – PDSe – 3 trks of a 3390, lrecl=80,blksize=32720

#blks=3,secondary# = 1,recfm=fb

Your.prefix.SSM.JCL – PDSe – 2 trks of a 3390, lrecl=80,blksize=32720,#blks=3,

secondary# = 1,recfm=fb

Your.prefix.SSM.LOADLIB – PDS dsorg=PO 3 trks of a 3390, lrecl=0, blksize=27998

directory blks = 3,recfm=u

** NOTE ** The SSM.LOADLIB library will have to be APF authorized, and will also

need to be link listed. Further, the SSM.LOADLIB library will need to be cataloged in

the MASTER CATALOG, so you will want to use a prefix that is not aliased. SYS1 or

SYS2 will work in most shops, if you are in doubt, ask your z/OS systems programmer.

** NOTE ** For all the sample jobs that I have provided, you should do the following;

 Alter the JOBCARD to match your installations standards.

 Replace the literals ‘your.prefix’ with the dataset name prefix you intend to use –

note – the prefix for the SSM LOADLIB may need to be different from the others.

 Review the UNIT= parameter to ensure it is coded properly for your shop.

 The ALOCLIBS member that allocates datasets is setup to use 3390 geometry

DASD. If you use some other type of DASD the allocation values may need to

change.

 The allocation amounts specified in the ALOCLIBS job are minimum allocation

amounts only – you may want to increase them somewhat for future maintenance.

Within the XMIT PDS that you received, locate the member ‘ALOCLIBS’, it has a

skeleton set of JCL to allocate the libraries. You will need to tailor it, and all jobs you

run for the installation, to your shops standards. Pay particular attention to the JOB

statement, and the UNIT= values. Note – the SSM.LOADLIB dataset will need to be

cataloged in the master catalog, so that it can be APF authorized and added to link

list during the IPL before JES2 starts.

24

 The JCL specifies a secondary allocation amount for all of the libraries except for the

SSM.LOADLIB, which has a secondary allocation amount of zero. I did this because

many shops require libraries in the link list not expand into secondary extents. Therefore

you may want to increase the size somewhat for future maintenance. The same could be

said of all the libraries, but the others can be changed more easily since they will not be

LINK LISTED or APF authorized.

Step 2 – Add the SSM load library to linklist and APF authorize it.

You can APF authorize and add the SSM LOAD library to the linklist via the PROGxx

member(s) in parmlib, please see the MVS Initialization and Tuning Reference manual

for details about how to add a library to the linklist, and how to authorize the same

library.

Step 3 – Populate the libraries using IEBUPDTE.

Within the XMIT PDS locate the member ‘COPYLIBS’, it has a skeleton set of JCL to

populate the libraries you just allocated in step 1. The job will use the data in the

following members to populate the libraries you allocated in step 1;

 RAWASM is used as input for SSM.ASM.

 RAWMACS is used as input for SSM.MACROS.

 RAWJCL is used as input for SSM.JCL.

 (the SSM.LOADLIB will be populated when you run the ASMLINK job).

Step 4 – Assemble and Bind the new load modules into
SSM.LOADLIB.

 Within the SSM.JCL (that you populated in the previous step) you should have a

member named ASMALL. Locate the member, and update the jobcard, and the prefix

values you selected for your SSM datasets – remember the SSM.LOADLIB dataset may

have a different high level prefix.

 This job will use your existing JES2 macro library as input (via the SYSLIB DD

statement in the assembly steps), make sure it is specified correctly for your shop.

 The job will place new load modules in the SSM.LOADLIB library, it is referenced via

the SYSLMOD DD statement in the BINDER steps.

 This job will take a few minutes to run completely, it is doing a lot of work. Make sure

that you have a large enough region size – I recommend 8M or larger on the REGION=

parm of the JOBCARD statement.

25

The job should run with condition code zero.

 If the job does not run with a completion code of zero – you must resolve any errors

before continuing!

Once this step is completed – go to STEP 2 OF THE SMP INSTALL PROCEDURES

to complete the installation and customization process.

26

How the exits work, and what each one does –

Module STJTABS, plus macro definitions

This first mod is a Shared Spool Mod. The first LOADMOD statement that is added to

your JES2 parms for these mods is for module STJTABS. STJTABS creates a dynamic

$SCANTAB entry for the DISPLAY command, and dynamic $BERTTAB entry to

define the JQE extensions, and a dynamic $PCETAB to create a special PCE to be used

with a TQE chain used and maintained by the SHARED SPOOL MODS. There is one

entry associated with this module - STPCENT - it is used in the definition of the PCE and

is not referenced by any EXIT statements. STPCENT is called when one of our special

PCEs is dispatched. Our special PCEs are dispatched at JES2 initialization, where they

perform local initialization functions and wait to be dispatched. After initialization the

special PCEs are dispatched only when a timer queue element that has been $WAITED

with a $STIMER macro expires. The function of the code for the special PCE is solely to

clear the chain of TQEs of posted elements, and to issue a $POST XEQ to cause JES2 to

look for work to move from the input queue to execution. This Usermod also establishes

the needed macros $STQNAME and $STJCTX, BOOLEAN, $SSMTB, $STTQE,

$STTQEXW, STPCSMFD and updates the $USERCBS macro. If you already have

changes other than these mods that affect the $USERCBS macro, you need to merge the

previous changes with these.

Module STSCX50A, JES2 end of input user exit

 The module handles special processing for the special case of a /*ROUTE XEQ HERE

statement, setting the sysaff if needed. The real work of this exit is to call common

module STSX2050, which is also called by exit20. STSX2050 copies information from

the JCT to the JQE extension for later use in job selection.

Module STSCX04A and STSCX54A, exit04A and exit54a

This is part of the SHARED SPOOL MODS. Exits 04 and 54 perform the same ‘JCL

statement scan’ function, but in different environments. Exit04A simply sets up a user

environment, and calls exit54A to do the needed work. Exit54a validates the /*ROUTE

XEQ RESNAME statement. If the RESNAME is a valid JES2 route value, we leave it

alone and let JES2 handle it. If the RESNAME is not a valid route value, it is saved in

the JCT until the rest of the job’s JCL is processed. It is finally used or discarded by

exit6. The exit also performs specialized processing for the special case of /*ROUTE

XEQ HERE.

27

Module STSCX54B, exit 54B

This is part of the SHARED SPOOL MODS; it is also used as an exit54. Note, in the

exit statements that you add to JES2 parms, EXIT(54) calls two modules; 54a and 54b.

This is the second one 54b. It parses and validates the /*BEFORE, AFTER, WITH

WITHOUT, HOLDFOR, HOLDTIL and CNTL statements, and then saves the

information in a JCT extension for the job. This exit makes extensive use of the new

$STMTTAB facility to scan the JCL statements.

Module STSCX06A, exit 06

This is part of the SHARED SPOOL MODS; it is used as an exit 06. Module

STSCX06A turns /*ROUTE XEQ schenvname into SCHENV= values. If a valid

SCHENV environment has not been set with a SCHENV statement, or possibly be some

other means, and if we found a /*ROUTE XEQ statement with a valid SCHENV name

that also would not have been a valid destination (as in a valid /*ROUTE XEQ statement

as intended by JES2 specs), then we use that value to set the SCHENV value in this exit.

Module STSC2050

This module is called by both exit 20 and exit 50. Exits 20 and 50 perform similar

functions, but in different environments. The function of module STSC2050 is to move

JCT extensions information into a BERT JQE extension at end of input time.

Module STSCX20A, exit 20

This is part of the SHARED SPOOL MODS support; and is used as an exit 20. This exit

sets up the proper environment and then calls module STSX2050 which in turn copies

JCT info into the JQE extension before the JCT is lost, when the last of the input JCL has

been read. The information is actually written into a JQE extension, not the JQE itself.

The extension is known as a BERT or Block Extension Reuse Table, and it was defined

in LSES500. The BERT is incorporated into JES when the $USERCBS macro was

updated with the $STQNAME macro that defines the extension. The $USERCBS macro

update forces a reassembly of all JES2 modules that might reference the extension.

This exit also checks to see if a /*ROUTE XEQ HERE statement was in the job stream,

and if one was present, and a sysaff was not already set via the jobcard or some other

means, the sysaff is set to match the system name that the job was read from.

28

Module STSCX49A, exit 49

This is part of the SHARED SPOOL MODS; and is used as an exit 49. This module

implements the before, after, with, without, holdtil, holdfor and cntl statements by

rejecting or allowing JES2’s suggested ‘next’ job in the job selection exit, exit49. Exit

49 is commonly referred to as the QGOT exit; it is called after JES2 has gone through its

normal process of selecting the next job on the input queue that is ready for execution,

but before the job actually starts running. Based on the /*BEFORE, AFTER, CNTL,

HOLDFOR, HOLDTIL, WITHOUT, or WITH statements, this exit makes a final

decision to allow the job to run, or to ask JES2 to locate another candidate job.

Modules STSCX19A, STSCX24A, and STSSMTBS

Module STSSMTBS, is a dynamic $SCANTAB that is used to process SSM parm

statements in the JES2 parms, and as referenced in $T commands. $SCANTAB entries

are extensively used to parse the SSM parms and $T SSM commands.

Module STSCX19A, which is used called for exit 19, is used to create a control block

used by the SHARED SPOOL MODS in ECSA which is referenced by a Name/Token

pair. The STSCX19A checks to see if there is a “left-over” copy of the control block for

this JES2 member, and if one exists, deal with it appropriately. Since we made no

provision for deleting the control block at JES2 termination, this check must be done to

clean up the control block from a previous run, and possibly from an incomplete JES2

startup attempt. Finally a new control block is allocated, initialized with default values,

and pointed to with a temporary Name/Token pair.

Module STSCX24A is used as exit 24. It checks for appropriate use of related SSM

statement values. It also deletes a temporary SSMT name/token pair and replaces it with

a permanent pair with global scope whose name is dynamically determined, and a

name/token pair with a fixed name and a local scope.

29

SMF RECORD LAYOUTS

 The SMF records that will be produced by future versions of the SHARED SPOOL

MODS will be subtyped records all with the same SMF record number as specified in the

SSM,SMFNUM=### statement. A different subtype is specified for each type of record.

** NOTE** SMF processing is still only partially implemented – we write some of

the record subtypes defined in the STPCSMFD mapping macro, some we do not –

the “future use” comments may be wrong in the mapping macro.

** * --- * **
** * -- THIS GROUP OF DS'S IS INTEDED TO BE USED AS PART OF AN -- * **
** * -- EXISTING DSECT, TO DESCRIBE AN SMF BUFFER FOR RECORD -- * **
** * -- TYPE 216 (D8) TECH SUBTYPED SMF RECORDS. -- * **
** * --- * **
SMFXLEN DS XL2 LRECL INCLUDING RDW
SMFXSEG DS XL2 SEGMENT - ALWAYS ZEROS
SMFXFLG DS XL1 B'0101 1110' INDICATES SUBTYPES
SMFXRTY DS XL1 SMF RECORD TYPE = 216 = X'D8'
SMFXTME DS XL4 TIME SINCE MIDNIGHT IN 1/100TH SEC.
* TOD, USING FORMAT FROM TIME MACRO WITH BIN. INTVL
SMFXDTE DS PL4 X'01YYDDDF'
* DATE IN PACKED DECIMAL FORM: 01YYDDDF
SMFXSID DS XL4 SYSID FROM (SID)
SMFXSSI DS XL4 SUBSYS ID (SSID = TECH) OR BLANKS
SMFXSTY DS XL2 RECORD SUBTYPE X'01'-X'FF'
* **** PROGRAM EXECUTION TRACKING SUBTYPES ****
* X'01' = TECH PGM EXECUTION
* X'02' = TECH PGM EXECUTION DUP LIB.
* X'03' = TECH PGM EXECUTION DUP LIB.
* X'04' = TECH PGM EXECUTION DUP LIB.
* X'05' = TECH PGM EXECUTION DUP LIB.
* **** S.S.M. = SHARED SPOOL MODS SUBTYPES ****
* X'40' = SSM REJECTION INFORMATION
* X'41' = SSM JOB PASSED SELECTION
* FUTURE X'42' = SSM OPERATOR ACTIONS ($T CMDS)
* X'43' = $SJ - ALLOWED OR REJECTED
* X'44' = SSM JECL CARD ACCEPTED
* FUTURE X'45' = SSM JECL CARD REJCTED JCL ERROR
* X'46' = SSM JOB SELECTION REDRIVEN
* FUTURE X'47' = JES2 SSM PARM ACCEPTED
* FUTURE X'48' = RESERVED FOR SSM
* FUTURE X'49' = RESERVED FOR SSM
SMFXNUMT DS XL2 NUMBER OF TRIPLETS (SUBTYPES 1-5= 2)
*
SMFXRESV DS XL2 LENGTH OF SELF-DEFINING SECTION
*** SELF-DEFINING SECTION ***
* - FIRST TRIPLET - PRODUCT SECTION

30

OFFPRD01 DS XL4 OFFSET FROM RDW TO PROD. SECTION
LENPRD01 DS XL2 LENGTH OF PRODUCT SECTION
NUMPRD01 DS XL2 NUMBER OF PRODUCT SECTIONS
*- SECOND TRIPLET - SUBTYPED DATA SECTION
OFFTEC01 DS XL4 OFFSET FROM RDW TO SUBTYPED DATA
LENTEC01 DS XL2 LENGTH OF SUBTYPED SECTION
NUMTEC01 DS XL2 NUMBER OF SUBTYPED SECTIONS
*
SDSEND EQU * END OF SELF DEFINING SECTION
SMFD8SSD EQU SDSEND-OFFPRD01 EQU'D LEN OF SELF DEFINING ssm SECT.
SMFD8TSD EQU SDSEND-OFFPRD01 EQU'D LEN OF SELF DEFINING tech SECT.
*
* THE PRODUCT SECTION(S) FOR JES2 SSM GOES HERE
*
 ORG SDSEND ORG TO END OF SELF DEFINING SECITON
*
PRDOFS EQU *-SMFXLEN OFFSET TO PRODUCT SECTION
SMFD8STY DS XL2 SUBTYPE - REPEATED - JUST IN CASE
SMFD8SVR DS XL4 SAME AS UBRVRM AND UJCXVRM
SMFD8SID DS XL16 C'SHARED SPOOL MOD'
PRDLENS EQU *-SMFD8STY LENGTH OF THE SSM PRODUCT SECTION
*
PRD8JZZ EQU * END OF SSM PRODUCT SECTION
*
* THE SUBTYPED SHARED SPOOL MODS DATA GOES IN HERE
*
STDOFFS EQU *-SMFXLEN OFFSET TO SUBTYPED SSM DATA
*
SMFD8S40 DS XL2 SUBTYPE - X'0040' SSM REJECTION INFO
SMFD80JI DS XL4 JOBID
SMFD80JN DS CL8 JOBNAME
SMFD80SI DS XL4 NODE ID REJECT TOOK PLACE ON
SMFD80TE DS XL8 NODE NAME REJECT TOOK PLACE ON
SMFD80GN DS XL8 NODE NAME REJECT TOOK PLACE ON
SMFD80ME DS CL12 REJECTION REASON
SMFD80XT DS CL8 STCK FORMAT DATE AND TIME
SMFLNS40 EQU *-SMFD8S40 LENGTH OF SUBTYPED DATA
SMFXLS40 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S41 DS XL2 SUBTYPE - X'0041' SSM JOB SELECTED
SMFD81IN DS XL2 INPUT NODE ID JQEINPND
SMFD81XN DS XL2 EXECUTION NODE ID JQEXEQND
SMFD81CD DS CL1 JQE CREATION TIME - JQXCRTME
SMFD81JC DS CL1 JOB CLASS JQEJCLAS
SMFD81JI DS XL4 JOBID
SMFD81JN DS CL8 JOBNAME JQEJNAME
SMFD81RI DS CL8 USERID OF JOB OWNER - JQEUSRID
SMFD81SL DS CL8 SECURITY LABEL OF JOB - JQESECLB
SMFD81XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFD81SE DS CL16 SCHEDULING ENVIRONMENT NAME -JQASCHE
SMFD81TE DS XL8 NODE NAME ACCEPTED ON
SMFD81GN DS CL8 XCF GROUP NAME ACCEPTED ON
SMFLNS41 EQU *-SMFD8S41 LENGTH OF SUBTYPED DATA

31

SMFXLS41 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S42 DS XL2 SUBTYPE - X'0042' SSM OPER CMDS
SMFD82XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
* THE ONLY THINGS AN OPERATOR CAN CHANGE ARE IN THE ECSA AREA -
* HERE IS A BEFORE AND AFTER COPY OF THE ECSA AREA
SMFD82NN DS XL8 NODE NAME ACCEPTED ON
SMFD82NX DS XL8 NODE ID COMMAND ENTERED ON
SMFD82CM DS CL140 THE COMMAND ITSELF (IF WE CAN GET IT)
SMFD82CB DS XL(SSMTBLEN) THE ECSA AREA ITSELF (BEFORE)
SMFD82CA DS XL(SSMTBLEN) THE ECSA AREA ITSELF (AFTER)
SMFLNS42 EQU *-SMFD8S42 LENGTH OF SUBTYPED DATA
SMFXLS42 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S43 DS XL2 SUBTYPE - X'0043' $SJ ALLOWED OR NOT
SMFD83DT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFD83NN DS CL1 A=$SJ IS ALLOWED ;;;; X=$SJ REJECTED
SMFLNS43 EQU *-SMFD8S43 LENGTH OF SUBTYPED DATA
SMFXLS43 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S44 DS XL2 SUBTYPE - X'0044' JECL CARD ACCPETED
SMFD84IN DS XL2 INPUT NODE ID JQEINPND
SMFD84CD DS CL1 JQE CREATION TIME - JQXCRTME
SMFD84JC DS CL1 JOB CLASS JQEJCLAS
SMFD84JI DS XL4 JOBID
SMFD84JN DS CL8 JOBNAME JQEJNAME
SMFD84RI DS CL8 USERID OF JOB OWNER - JQEUSRID
SMFD84XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFD84SE DS CL16 SCHEDULING ENVIRONMENT NAME -JQASCHE
SMFD84MG DS CL60 DETAILED INFO FOR SMF
SMFD84JA DS CL(UJCXSLN1) THE STQNAME (JCT EXTENSION) AFTER
SMFLNS44 EQU *-SMFD8S44 LENGTH OF SUBTYPED DATA
SMFXLS44 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S45 DS XL2 SUBTYPE - X'0045' JECL CARD REJECTED
SMFD85IN DS XL2 INPUT NODE ID JQEINPND
SMFD85CD DS CL1 JQE CREATION TIME - JQXCRTME
SMFD85JC DS CL1 JOB CLASS JQEJCLAS
SMFD85JI DS XL4 JOBID
SMFD85JN DS CL8 JOBNAME JQEJNAME
SMFD85RI DS CL8 USERID OF JOB OWNER - JQEUSRID
SMFD85SL DS CL8 SECURITY LABEL OF JOB - JQESECLB
SMFD85XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFD85SE DS CL16 SCHEDULING ENVIRONMENT NAME -JQASCHE
SMFD85TE DS XL8 NODE NAME ACCEPTED ON
SMFD85MG DS CL140 JECL CARD IMAGE PROCESSED
SMFLNS45 EQU *-SMFD8S45 LENGTH OF SUBTYPED DATA

32

SMFXLS45 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S46 DS XL2 SUBTYPE - X'0046' QSEL IS REDRIVEN
SMFD86IN DS XL2 NODEID SOMEWHERE IN $HCT OR $HCCT
SMFD86XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFLNS46 EQU *-SMFD8S46 LENGTH OF SUBTYPED DATA
SMFXLS46 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S47 DS XL2 SUBTYPE - X'0047' SSM PARM ACCEPTED
SMFD87IN DS XL2 NODEID SOMEWHERE IN $HCT OR $HCCT
SMFD87XT DS CL8 STCK FORMAT DATE AND TIME - THIS REC
SMFD87PM DS CL256 PARM VALUE ACCEPTED
SMFD87EC DS XL(SSMTBLEN) THE ECSA AREA ITSELF
SMFLNS47 EQU *-SMFD8S47 LENGTH OF SUBTYPED DATA
SMFXLS47 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S48 DS XL2 SUBTYPE - X'0047' SSM PARM ACCEPTED
SMFD8801 DS XL1 SOME DATA TO RECORD(UNUSED FOR NOW)
SMFD8802 DS XL1 MORE DATA TO RECORD
SMFLNS48 EQU *-SMFD8S48 LENGTH OF SUBTYPED DATA
SMFXLS48 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
 ORG PRD8JZZ ORG TO END OF SSM PRODUCT SECTION
*
SMFD8S49 DS XL2 SUBTYPE - X'0047' SSM PARM ACCEPTED
SMFD8901 DS XL1 SOME DATA TO RECORD(UNUSED FOR NOW)
SMFD8902 DS XL1 MORE DATA TO RECORD
SMFLNS49 EQU *-SMFD8S49 LENGTH OF SUBTYPED DATA
SMFXLS49 EQU *-SMFXLEN LENGTH OF THE ENTIRE RECORD
*
* end of record layout *

33

A few final notes for /*BEFORE and /*AFTER

 A few final notes concerning the relationship between /*BEFORE, and /*AFTER.

There is a peculiar type of problem that has been around since the first design of the

Mellon Mods, and I only bring it up here to clarify the potential problem, and offer

possible solutions for the problem.

 Many people try to use these statements, and stack two or more jobs in the same PDS

member and submit them all at the same time with one SUBMIT command. This usually

works as expected, but sometimes JES2 does not ‘seem’ to PROCESS the jobs in the

order they appear in the submitted member. Actually JES2 always processes in the order

they are presented to JES2 in, however these exits do not ‘see’ the jobs for the purposes

of job selection until after they have completed the conversion process and you could

have several different converter tasks running under JES2 which could easily lead to one

job with a very few DD statements finishing the conversion process and being placed on

the next queue long before a job with many different DD statements that was submitted

just before the smaller job. This can result in a job with a /*AFTER statement for a prior

job you think JES2 has already seen and processed because of the sequence the jobs are

in when first submitted, being processed and initiated before JES2 ever finishes reading

the job that is the object of the /*AFTER statement. This problem seldom crops up, but

can be VERY confusing and difficult to explain when it does. This is also the way the

mods were originally designed, and have been working for many, many years.

 This problem can be avoided by making sure that jobs with /*BEFORE and /*AFTER

requirements are submitted separately from each other and in an appropriate sequence;

however that may not be practical in all situations.

 In an effort to mitigate the potential problem described in the scenario above we have

introduced the BEAFTER parm that can be set to the value of PREMOD or DELAY. If

the parm is set to PREMOD, or allowed to default, the processing will continue as it

always has in the past. If however DELAY is set, then the value in parm BATIME will

be used as a delay time for all jobs. By delaying all jobs a few seconds after they are first

available for execution, we are hoping that any ‘slow’ jobs, ones that may take a long

time in the conversion queue, will have a chance to catch up, and be available for

consideration when a job with a /*BEFORE or /*AFTER card is considered for possible

execution. There is a trade off for this type of processing however, it obviously

introduces a small delay for all jobs before execution, even though only a small number

of jobs will potentially benefit from the delay. There may of course be other reasons why

a shop may want to delay jobs before allowing them to become available for execution, I

just can’t think of any.

 There are three other methods that I have come across that can also be used to alleviate

this special situation that can come up in regard to /*BEFORE and /*AFTER processing.

First you may opt to have only a single conversion task (see JES2 parm PCEDEF

CNVTNUM) although this is NOT recommended, it will force jobs to convert one at a

34

time, and the ‘out of order’ condition can not occur. Next you may add one of the new

/*WAITFOR 00:00:04 statements to all jobs associated with /*BEFORE /*AFTER

control statements. This has the same effect as specifying BATIME=4 and

BEAFTER=DELAY, except that it only affects the jobs that actually might be affected.

Finally we could code a POSITIVE recognition that the before or after jobname condition

is being met. This is considerably more complex than it first sounds, and introduces yet

more potential problems, such as; how far back do we reference job completions to see if

a /*AFTER jobname, has been satisfied? It is however something that I intend to do in

the future.

 In the meantime, I would strongly suggest that you either use the BEAFTER option of

DELAY or add /*HOLDFOR 00:00:04 cards to the jobs using /*BEFORE and /*AFTER

statements.

Here is a full example of this type of problem - two jobs are in the same
member to be ‘sub’ed at the same time, although a scheduling package that
submits two jobs at very nearly the same time can have the same effect.

MEMBERA Contains.
 //FIRSTJOB JOB (123,abc),CLASS=X
 /*BEFORE LASTJOB
 //STEP001 EXEC PGM=ANYPGM
 //DD001 DD DSN=A.B.C.D,DISP=SHR
 //DD002 DD DSN=A.B.C.E,DISP=SHR
 //…… (another 100 dd statements go in here)

//LASTJOB JOB (123,abc),class=x
 /*AFTER FISTJOB
 //STEPONLY EXEC PGM=IEFBR14

MEMBERA is submitted -

 Now the intent is clearly that LASTJOB should run after FIRSTJOB, but if
they are both submitted at the same time, each job could be assigned a
different converter processor. Since LASTJOB has no DD statements and only
one JOB and one EXEC statement, it will complete conversion and move to the
XEQ queue long before FIRSTJOB is converted. Then if while FIRSTJOB is still
in conversion processing, LASTJOB is selected by JES2 as a potential job to
execute, the SHARED SPOOL MODS will check to see if FIRSTJOB is either in the
same queue waiting to execute or is already executing, but since it has not
even finished conversion it will not be found, and LASTJOB will be allowed to
run (with the exits making the assumption that FIRSTJOB must have already
run). Later, maybe only a few milliseconds later, FIRSTJOB may finish
conversion and be selected for possible execution. The exits will check to
see if jobname LASTJOB is in the input queue, will not find it there, and will
allow the job to execute.

35

You can check for a newer version of the Shared Spool Mods on the CBT tape web site –

http://www.cbttape.org

If you need formal support for the Shared Spool Mods.

 The Shared Spool Mods are normally supported on a time available basis, meaning I

will do what I can, as I can, as soon as I reasonably can. I do provide all of the source for

the Shared Spool Mods as part of this package – NOTHING IS HIDDEN!

 If however you still want, or need a formal support contract for the Shared Spool Mods,

that will entitle you to 24 X 7 X 365 support for the product directly from the author,

including installation help, please feel free to visit the following web page to begin the

process of getting a formal support contract;

 http://WWW.MVSPROGRAMMER.COM/SSMODS.HTML

 If you need a more robust product, one that includes formal support, all the features of

the SHARED SPOOL MODS, PLUS simple to use ‘intelligent’ non-WLM based

resource routing, and JES3 style /*NET support for extremely complex job relationships,

please consider the ESSM Enhance Shared Spool Mods product that I have developed.

Full details are available at;

 HTTP://WWW.MVSPROGRAMMER.COM/ESSMHOME.HTML

 Thanks for trying out the Shared Spool Mods, and don’t forget to ask for your FREE

coffee MUG! I have to get rid of these things!

EMAIL CONTACT – STEPHEN.MCCOLLEY@MVSPROGRAMMER.COM

(end of document)…

http://www.cbttape.org/
http://www.mvsprogrammer.com/SSMODS.HTML
http://www.mvsprogrammer.com/ESSMHOME.HTML

